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LE'lTER TO THE EDITOR 

Hierarchical lattice with competing interactions: an 
example of a nonlinear map 

N M SvrakiCtS, J KertCsztO and W Selkell 
t Theoretische Physik, Universitat zu Koln, 5000 Koln 41, Federal Republic of Germany 
IIInstitut fur Festkorperforschung der Kernforschungsanlage, Postfach 1913, Jiilich, 
Federal Republic of Germany 

Received 29 April 1982 

Abstract. An king model with competing nearest and more-than-nearest neighbour 
interactions on a hierarchical lattice is solved by decimation. In the context of nonlinear 
mappings the renormalisation group trajectories are analysed as the competition parameter 
is varied. Commensurate and incommensurate phases are identified. 

Models with competing interactions have attracted a great deal of attention recently 
in the context of spatially modulated structures and/or spin-glass phenomena. For 
example, the ANNNI (axial next-nearest neighbour Ising) model has been extensively 
studied by a large variety of methods, such as the exact low-temperature expansion 
(Fisher and Selke 1980), Monte Carlo simulations (Selke and Fisher 1979, Selke 1981), 
mean field theories (Bak and von Boehm 1980), free fermion approximation (Villain 
and Bak 1981) and renormalisation group approaches (SvrakiC 1982). The results of 
these studies show that the presence of competition gives rise to a remarkable richness 
of phenomena such as the spatially modulated ordering, possibly a devil's staircase 
like behaviour of the wavevector of modulation, a sequence of infinitely many distinct 
commensurate phases springing from a multiphase point, a Lifshitz point. In the 
ANNNI model the competition arises from nearest neighbour ferromagnetic and axial 
next-nearest neighbour antiferromagnetic interactions, each interaction preferring a 
different periodicity of the ordered phase. A different mechanism of competition is 
offered by spin-glass models where one has randomly distributed ferromagnetic and 
antiferromagnetic interactions. For these models the concept of frustration is central 
in understanding the unusual behaviour of the spin-glass phase. 

In this article we consider the first type of competition. We study an Ising model 
with competing nearest and more-than-nearest neighbour interactions on a hierarchical 
lattice (Kaufman and Griffiths 198 1) using the position space renormalisation group 
which is for this class of lattices exact. In the context of nonlinear mappings (Collet 
and Eckmann 1980, Ott 198 1) the renormalisation group trajectories are analysed 
as the competition parameter is varied. A similar study of the spin-glass type of 
competition was recently performed by McKay et a1 (1982) and Erzan (1982). 

The motivation for this study is twofold. (i) Our non-trivial model with competing 
interactions can be easily solved exactly, in contrast to the ANNNI model on hypercubic 
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lattices where only a part of the phase diagram for d > 2 is known exactly. (ii) The 
method of treatment and the results are intriguing in their own right since they involve 
the analysis of nonlinear recursion relations, a subject which is relevant in many 
domains of physics. As will be seen below, the map we use contains a control parameter 
which enters the recursion relation in a non-multiplicative way and it violates the 
Schwarzian condition, in contrast with maps for which the original scenario of Feigen- 
baum (1978) was developed. 

The hierarchical models (Forgacs and Zawadowski 1982, Kaufman and Griffiths 
1981, Berker and Ostlund 1979) form a class of exactly solvable lattice models which 
exhibit phase transitions at finite temperatures with non-classical exponents. In figure 
1 we show an example for construction of one hierarchical model. Four primitive 
bonds are assembled in the unit shown by the arrow (see figure l(a)), which is then 
further assembled into a self-similar unit, and so on. This process is repeated ad 
infinitum. The result is a self-similar, non-homogeneous lattice with infinite number 
of spins. Note that different spins will have different coordination number and that 
dimensionality of the lattice is difficult to define (Kaufman and Griffiths 1981). 

Figure 1. The construction of hierarchical models. 

The construction can, of course, be reversed. A primitive bond is seen as a bond 
in a larger unit, which is itself a part in a larger self-similar unit, etc. The specific 
hierarchical model we use is constructed in this way and the process is illustrated in 
figures l (6 )  and l (c) .  The basic unit is shown in figure l (6) .  The full lines are 
ferromagnetic couplings K, while the broken lines are the antiferromagnetic couplings 
-pK. In this way the competition between ferromagnetic and antiferromagnetic 
interactions is introduced. The parameter p measures the strength of competition 
and we shall always take it to be positive. 

The construction proceeds as follows. The basic unit, denoted by B in figure 1(6), 
is assembled into the unit B’ shown in figure l (c ) .  The broken lines in this new 
structure are now -pK’, where K’ is the effective interaction between two end (white) 
sites in figure l(b),  and is obtained by decimating over the black sites. In this way 
we can introduce the same amount of competition at each level of hierarchy. This 
procedure is then repeated infinitely many times. Obviously, the hierarchical lattices 
are highly artificial, defined, in essence, by their solution. This is the price we have 
to pay in order to obtain the exact solution. 
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The recursion relation for the coupling constant is readily obtained by decimation 
over black sites. We get 

K,,+l = -pK, +In cosh 2(-pK,, +In cosh 2K,,), (1) 
where K,, is the effective interaction between two nearest neighbour spins on the nth 
level of hierarchy. In a similarly straightforward manner one can calculate the 
constant-term recursion relation from which the free energy can be obtained. In the 
following we shall study the basic equation (1). Clearly, it is a one-dimensional 
nonlinear map with the parameter of competition p as the control parameter. Denoting 
the right-hand side of the equation (1) by a function f, we have the mapping K,+l = 
f(K,,, p ) .  In order to analyse this map we note that it cannot be restricted to a finite 
interval for p = 1. We thus consider separately the cases p < 1 and p > 1. 

For p < 1, f has one extremum (minimum) of the quadratic type and two fixed 
points: the trivial one (KT = 0), which is stable, and another (K;) unstable one. 
There is an interval in the (K, p )  plane in which f violates the Schwarzian condition 
(Collet and Eckmann 1980), indicating that there may exist other stable orbits with 
restricted basins of attraction. Indeed, we have found that for certain values of p and 
K there are stable limit cycles in addition to the above fixed point. 

For 1 < p  <$, f is again a map on a finite interval (in contrast to p = 1). KT = 0 
becomes unstable for p > 1. At p = $ the minimum off disappears. For (17/9)1’2 < p  < 
2.56. , . the map f is no longer finite and all points from this region flow to a fa 
limit cycle. Beyond p = 2.56.. . a new sequence of limit cycles appears (f develops 
new extrema) up to p = 5 where the fa limit cycle sets in again and remains for all 
higher values of p .  More detailed properties of the mapping f are given below. 

We now present numerical details of the mapping f and the main body of our 
results. Figure 2 depicts the global features of the flows. The physical interpretation 
is as follows: clearly KT = 0 is always the fixed point of f with f ’ ( K f )  = -p, where a 
prime denotes the first derivative. This fixed point corresponds to the paramagnetic 
phase. In the region p < 1 there is another fixed point (an unstable one) KZ given 
implicitly by the equation p = (In cosh 2K; )/K; - 1. This condition determines the 
ferromagnetic phase boundary since the points K >K$ flow to infinity, which is the 
sink of the ferromagnetic phase. Points K<K;, for p <pl (=0.6698.. .), flow to 
KT = O .  

At p = p l  a stable two-point limit cycle appears. The basin of attraction of this 
limit cycle has a band-like structure. To see this we fix the value of p at p1 < p  < p 2  
(see figure 3). Now we start increasing the initial value of the coupling K, starting at 
zero. For sufficiently small K, K,, will flow to zero. This will happen until K reaches 
the value KL above which it enters the range of attraction of the stable limit cycle. 
As the value of K is further increased, it reaches the value Ku above which it leaves 
the basin of attraction of the stable limit cycle and maps again onto zero. Upon 
further increase, above Ku, K enters the domain of attraction of the limit cycle for 
the second time at KL1 and leaves this domain at Kul. In such a sequence the domain 
of attraction of the limit cycle is entered until the value K; is reached. This band 
structure is shown in figure 3. As K is varied between zero and K; infinitely many 
bands are encountered. One may interpret the stable limit cycles as sinks of modulated 
phases commensurate with the hierarchical structure of the model, because the effective 
couplings repeat themselves after the period of the cycle. Then the band structure 
corresponds to infinitely many re-entrances separated by paramagnetic regions. A 
similar result for the three-state chiral Potts model on a hierarchical lattice was recently 
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Figure 2. Renormalisation group topology as competition parameter p is varied showing 
some of the bifurcation cascades, chaotic bands (vertical segments) and windows (indicated 
schematically by large dots). Note that the line i% maps onto FB (ferromagnetic phase 
boundary) and points below i% map onto points above FB. For details in the range 
0.67 < p < 1 see figure 3. 

Figure 3. Details of the topology and basins of attraction (broken lines) for 0.67 < p  < 1 
and K > 0. The dots illustrate windows in between chaos. Note that higher bands of the 
basin of attraction are not shown. The different basin of attraction near the 3 X 2" cycles 
( p  = 0.9) is shown schematically. 
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obtained by Huse (1981; figure 10). Note that KL is the lower limit of the ‘modulated 
phases’. KL itself is an element of the two-point unstable limit cycle. In figure 3 we 
show only three bands. The points from within the upper bands map onto lower ones 
until the lowest band is reached. The points from this band (first band in figure 3) 
after a single iteration map to the negative side of the K axis and then back again 
into the first band. If one starts with K < 0 the first iteration will map it onto the 
positive side and the above discussion applies unchanged. For this reason we show 
in figure 3 the band structure only for the positive values of K. 

For p >pl one observes a cascade of bifurcations until the accumulation point at 
p 2  = 0.7289 . . , is reached. The convergence rate S (Collet and Eckmann 1980) after 
a few period doublings seems to converge to the universal number 4.669. . . . Beyond 
p 2  the chaotic regime is encountered with usual noisy bands (Collet and Eckmann 
1980, Ott 1981) and windows of stable limit cycles of various periodicities. In the 
same spirit as the stable limit cycles are interpreted as commensurate structures we 
can interpret the noisy bands as incommensurate structures. One might push the 
analogy even further: the intermittent behaviour preceding the onset of a stable limit 
cycle window (Ott 1981), where long regular sequences are separated by irregular 
bursts, may be interpreted as the phase where ‘almost commensurate’ regions are 
separated by ‘discommensurations’ or ‘domain walls’. There are many (presumably 
infinitely many) windows. For example, we find at p ~ 0 . 7 2 9 8  a stable limit cycle 
sequence with periods 36-72 in the window of width 7 x a 30-60-120 sequence 
at p = 0.736; an 8-16-32-64 sequence at p = 0.7498 and many more. 

For p 3  < p  < 1, we find a 3 x 2” bifurcation cascade followed by a chaotic regime 
(Collet and Eckmann 1980) for 0.895 < p  C0.9125, while elsewhere almost every 
initial coupling K, K < K z ,  appears to be mapped onto zero (since we changed the 
p-values in discrete steps of about lop4 we certainly cannot exclude additional stable 
orbits on a smaller scale). The band structure becomes increasingly complex by taking 
the larger values of p. To give an example, we discuss briefly the situation as p just 
exceeds p 3 :  there, the boundaries of the old bands (KLn,Kvn) still give rise to the 
unstable cycles, as before. Also, the points inside the upper bands still map onto the 
lower ones until one reaches the lowest or first band (KL, KU). However, there is a 
new sub-band structure inside the first band: points in region I (see figure 3) will be 
mapped onto Ku < K < KLl after two iterations, from where they are mapped finally 
to zero. In addition, inside the first band there are regions 11, 111,. . . , which map 
after two iterations onto regions I, 11,. . . (not shown in figure 3). 

At p = 1 we encounter a special situation: the fixed point at KT = 0 becomes 
marginal, and the unstable fixed point K; moves to infinity: the ferromagnetic phase 
disappears. In addition the trajectories become chaotic. 

For p > 1 the chaotic trajectories are interrupted by windows of stable limit cycles. 
The domain of attraction of these limit cycles becomes the whole K axis except for 
a set of zero measure. For example, for p = 1.13 a twelve-point limit cycle is found 
which merges into a six-point cycle at p = 1.15 and this one becomes then a three-point 
cycle at p = 1.18 (note the order of periodicities as p is increased). There are many 
more similar windows in this region. At p = 1.285 . . an accumulation point of the 
stable 2”-point limit cycle is found. With increasing p this merges into a two-point 
limit cycle at p = 1.29. This is shown in figure 2. This two-point limit cycle spreads 
out until p = (17/9)”’ where it becomes a stable two-point limit cycle between +CO 

and -CO. This cycle may be interpreted as the sink of a new ordered phase reminiscent 
of the (2) phase in the ANNNI model (Fisher and Selke 1980). 
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In this letter we defined an exactly solvable model with competing interactions on 
a hierarchical lattice, We introduced competing interactions both locally and of 
long-range type. The strength of the nearest to next-nearest neighbour coupling is 
given by the parameter p. Hierarchical lattices have been introduced to get exact 
realisations of the renormalisation group transformations which are approximate for 
Bravais lattices (Forgacs and Zawadowski 1982, Berker and Ostlund 1979, Yeomans 
and Fisher 1981). However, they can also be constructed without referring to common 
lattices to elucidate interesting physical concepts (McKay et a1 1982, Erzan 1982)- 
similar to other uncommon lattices like the Cayley tree (Vannimenus 1981). 

In our case we can study the occurrence of modulated phases of commensurate 
and incommensurate type due to the competing interactions. The basic renormalisa- 
tion group equation (1) describes the effective coupling constant on successive levels 
of hierarchy. The modulation shows up in the sequence of coupling constants one 
encounters by iterating the map ad infinitum. Stable limit cycles correspond to 
commensurate phases and the noisy bands may be interpreted as sinks of incommensur- 
ate phases. Several interesting phenomena occur, such as continuously varying critical 
exponents and a sequence of infinitely many re-entrances of modulated structures 
separated by paramagnetic phases reminiscent of the similar behaviour found in the 
mock ANNNI model (Huse et a1 1981) or the chiral Potts model (Huse 1981). The 
latter phenomenon stems from some mathematical subtleties associated with the 
one-dimensional map, equation (l), which do not occur in many of the well known 
maps like the logistic one (non-multiplicative control parameter, breakdown of Schwar- 
zian condition). We therefore conclude that hierarchical models may not only add to 
the understanding of complex physical situations, but may also exhibit a lot of 
interesting mathematics. 

Two of us (NMS and JK) would like to acknowledge the financial support by SFB 
125 Aachen-Julich-Koln. 
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